Effects of small-angle mistilts on dopant visibility in ADF-STEM imaging of nanocrystals.

نویسندگان

  • Jacob T Held
  • Samuel Duncan
  • K Andre Mkhoyan
چکیده

Quantitative ADF-STEM imaging paired with image simulations has proven to be a powerful technique for determining the three dimensional location of substitutionally doped atoms in thin films. Expansion of this technique to lightly-doped nanocrystals requires an understanding of the influence of specimen mistilt on dopant visibility due to the difficulty of accurate orientation determination in such systems as well as crystal movement under the beam. In this study, the effects of specimen mistilt on ADF-STEM imaging are evaluated using germanium-doped silicon nanocrystals as model systems. It is shown that dopant visibility is a strong function of specimen mistilt, and the accuracy of specimen orientation is an important factor in the analysis of three-dimensional dopant location, but the sensitivity to mistilt can be weakened by increasing the STEM probe convergence angle and optimizing ADF detector inner angle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limits in detecting an individual dopant atom embedded in a crystal.

Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms located on the surface of or inside a crystal. Contrast between intensities of an atomic column containing a dopant atom and a pure atomic column in ADF-STEM image depends strongly on specimen parameters and microscope conditions. Analysis of multislice-based simulations of ...

متن کامل

Imaging "invisible" dopant atoms in semiconductor nanocrystals.

Nanometer-scale semiconductors that contain a few intentionally added impurity atoms can provide new opportunities for controlling electronic properties. However, since the physics of these materials depends strongly on the exact arrangement of the impurities, or dopants, inside the structure, and many impurities of interest cannot be observed with currently available imaging techniques, new me...

متن کامل

Channeling of Aberration-corrected STEM Probes at the “ Sub-atomic” Scale

The phenomenon of fast electron channeling in atomic crystals has long been appreciated as an important factor in TEM characterization, being particularly critical for consideration in scanning transmission electron microscopy (STEM). As such, electron channeling effects have been examined to understand the thickness-dependence of annular-dark-field (ADF) STEM image contrast [1], the emergence ...

متن کامل

Effects of amorphous layers on ADF-STEM imaging.

A study of high-resolution ADF imaging in uncorrected and aberration-corrected STEMs was carried out by multislice simulation. The presence of amorphous layers at the surface of a crystalline specimen is shown to significantly alter the visibility of the atomic columns. After propagating through an amorphous layer a portion of the beam passes without any alteration while scattered electrons int...

متن کامل

Towards quantitative analysis of core-shell catalyst nano-particles by aberration corrected high angle annular dark field STEM and EDX

One of the most useful and apparently straightforward attributes of annular darkfield (ADF) STEM imaging is the ability to image heavy atoms on relatively light substrates using Z-contrast (High-Angle ADF) imaging. From multislice calculations, however, some isolated heavy atoms, e.g. Re, can go undetected in a thin Co matrix in standard aberrationcorrected HAADF-STEM imaging of catalyst nanopa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultramicroscopy

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2017